Optimizing Dendritic Cell-Based Approaches for Cancer Immunotherapy

Dendritic cells (DC) are professional antigen-presenting cells uniquely suited for cancer immunotherapy. They induce primary immune responses, potentiate the effector functions of previously primed T-lymphocytes, and orchestrate communication between innate and adaptive immunity. The remarkable diversity of cytokine activation regimens, DC maturation states, and antigen-loading strategies employed in current DC-based vaccine design reflect an evolving, but incomplete, understanding of optimal DC immunobiology. In the clinical realm, existing DC-based cancer immunotherapy efforts have yielded encouraging but inconsistent results. Despite recent U.S. Federal and Drug Administration (FDA) approval of DC-based sipuleucel-T for metastatic castration-resistant prostate cancer, clinically effective DC immunotherapy as monotherapy for a majority of tumors remains a distant goal. Recent work has identified strategies that may allow for more potent “next-generation” DC vaccines. Additionally, multimodality approaches incorporating DC-based immunotherapy may improve clinical outcomes.

Affiliation

Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.

Breast Cancer Developments

Over-expression of the HER2/neu receptor occurs in 20 to 30 percent of breast tumors and is linked to poorer prognosis. The HER2/neu expression status determines whether or not patient will receive trastuzumab-based treatment. In clinical practice, over-expression of HER2/neu is routinely identified using Immunohistochemistry (IHC) or Fluorescence in Situ Hybridization (FISH), both of which are invasive approaches requiring tissue samples. Serum assays for the Extra Cellular Domain of HER2/neu receptor (HER2 ECD) have been reported but the use is very limited due to serum interference factors (e.g. human anti-animal immunoglobulin antibodies) that lead to false test results and inconsistency with tissue Her2 status. We have developed an ELISA based approach using an MBB buffer to eliminate false results and to obtain more accurate assessment of HER2 ECD levels. Using this refined assay we retroactively measured HER2/neu levels from breast cancer patients and controls. Abnormal HER2 ECD levels were detected in about 32% of invasive breast cancer patients but not in controls or patients with benign diseases. In addition, we also showed that patients with elevated serum HER2 levels appeared to have worse survival regardless of treatments. In a small group of 12 Ductal Carcinoma in situ (DCIS) patients who received HER2/neu peptide vaccination and surgery, only one patient showed constantly rising HER2 levels after treatment and this patient had recurrence of HER2 positive tumor within 5 years. Our studies indicate that once the serum interference issue is resolved, serum HER2 ECD can have potential clinical utility to supplement the tissue based tests.

Affiliation

Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, U.S.A.

Dendritic Cells

Toll like receptor (TLR)-stimulated dendritic cells (DCs) are able to overcome the inhibitory activity of regulatory T cells (Tregs) and induce the proliferation of effector T cells. TLR-activated DCs secrete a soluble factor and act directly on Tregs to convert them into interferon γ-secreting TH1-like cells that express the transcription factor T-bet.

Affiliation

Department of Surgery and Harrison Department of Surgical Research; University of Pennsylvania; Philadelphia, PA USA ; Rena Rowan Breast Center; University of Pennsylvania; Philadelphia, PA USA.

Vaccination Strategies

Vaccination strategies incorporating the immunodominant HLA-A2-restricted HER2/neu-derived peptide 369-377 (HER2369-377) are increasingly utilized in HER2/neu-expressing cancer patients. The failure of postvaccination HER2369-377-specific CD8(+) T cells to recognize HLA-A2(pos)HER2/neu-expressing cells in vitro, however, has been attributed to impaired MHC class I/HLA-A2 presentation observed in HER2/neu-overexpressing tumors. We reconcile this controversy by demonstrating that HER2369-377 is directly recognized by high functional-avidity HER2369-377-specific CD8(+) T cells-either genetically modified to express a novel HER2369-377 TCR or sensitized using HER2369-377-pulsed type 1-polarized dendritic cells (DC1)-on class I-abundant HER2(low), but not class I-deficient HER2(high), cancer cells. Importantly, a critical cooperation between CD4(+) T-helper type-1 (Th1) cytokines IFNγ/TNFα and HER2/neu-targeted antibody trastuzumab is necessary to restore class I expression in HER2(high) cancers, thereby facilitating recognition and lysis of these cells by HER2369-377-specific CD8(+) T cells. Concomitant induction of PD-L1 on HER2/neu-expressing cells by IFNγ/TNF and trastuzumab, however, has minimal impact on DC1-sensitized HER2369-377-CD8(+) T-cell-mediated cytotoxicity. Although activation of EGFR and HER3 signaling significantly abrogates IFNγ/TNFα and trastuzumab-induced class I restoration, EGFR/HER3 receptor blockade rescues class I expression and ensuing HER2369-377-CD8(+) cytotoxicity of HER2/neu-expressing cells. Thus, combinations of CD4(+) Th1 immune interventions and multivalent targeting of HER family members may be required for optimal anti-HER2/neu CD8(+) T-cell-directed immunotherapy.

Affiliation

Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Rena Rowen Breast Center, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania. brian.czerniecki@uphs.upenn.edu.

New Developments with T-Cells

The ErbB2 protein is a member of the tyrosine kinase family of growth factor receptors that is overexpressed in cancers of the breast, ovary, stomach, kidney, colon, and lung, and therefore represents an attractive candidate antigen for targeted cancer immunotherapy. Cytotoxic T lymphocytes specific for various immunogenic ErbB2 peptides have been described, but they often exhibit both poor functional avidity and tumor reactivity. In order to generate potent CD8(+) T cells with specificity for the ErbB2(369-377) peptide, we performed one round of in vitro peptide stimulation of CD8(+) T cells isolated from an HLA-A2(+) patient who was previously vaccinated with autologous dendritic cells pulsed with HLA class I ErbB2 peptides. Using this approach, we enriched highly avid ErbB2-reactive T cells with strong ErbB2-specific, antitumor effector functions. We then stimulated these ErbB2-reactive T cells with ErbB2(+) HLA-A2(+) tumor cells in vitro and sorted tumor-activated ErbB2(369-377) peptide T cells, which allowed for the isolation of a novel T-cell receptor (TCR) with ErbB2(369-377) peptide specificity. Primary human CD8(+) T cells genetically modified to express this ErbB2-specific TCR specifically bound ErbB2(369-377) peptide containing HLA-A2 tetramers, and efficiently recognized target cells pulsed with low nanomolar concentrations of ErbB2(369-377) peptide as well as nonpulsed ErbB2(+) HLA-A2(+) tumor cell lines in vitro. In a novel xenograft model, ErbB2-redirected T cells also significantly delayed progression of ErbB2(+) HLA-A2(+) human tumor in vivo. Together, these results support the notion that redirection of normal T-cell specificity by TCR gene transfer can have potential applications in the adoptive immunotherapy of ErbB2-expressing malignancies.

Affiliation

1 Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania , Philadelphia, PA 19104.