Cancer

Combining Innate Immunity With Radiation Therapy for Cancer Treatment

The widely shared goal of cancer immunotherapy is to stimulate an immune response of sufficient quality and magnitude to destroy primary malignancies and their metastases. Cancer immunotherapy has taken many cues from the development of successful antimicrobial vaccines.

Antimicrobial vaccines rely on the immune system’s capacity to distinguish self-tissues from infectious non-self so that invading pathogens, and the cells they might infect, could be efficiently identified and eliminated, while sparing healthy tissues. The process of discriminating self from infectious non-self is facilitated by the millions (and in some cases billions) of years of evolutionary divergence that separates vertebrates from the pathogens that infect them.

This separation has given rise to individual proteins and other generalized molecular structures that serve to distinguish microbes from men. In theory, malignant cells that express protein antigens that either are unique to the tumor, vastly over-expressed by the tumor, or whose expression is at least restricted to a narrow range of self-tissues provides a potential immunologic handle whereby tumors may be specifically recognized and destroyed.

In practice, however, it has proven unexpectedly difficult to coax the immune system into vigorously rejecting malignancies, despite repeated demonstrations that tumor-associated antigens can provoke immune responses. In this issue of Clinical Cancer Research, Mason et al. (1) shows, using a murine subcutaneous and lung metastasis sarcomatreatment model, that synthetic oligodeoxynucleotides (ODN) containing unmethylated CpG motifs (characteristic of bacterial DNA) could be given with conventional radiation therapy to greatly augment therapeutic efficacy through an apparent immune-mediated.

Dendritic Cell-Induced Th1 and Th17 Cell Differentiation for Cancer Therapy

The success of cellular immunotherapies against cancer requires the generation of activated CD4+ and CD8+ T-cells. The type of T-cell response generated (e.g., Th1 or Th2) will determine the efficacy of the therapy, and it is generally assumed that a type-1 response is needed for optimal cancer treatment. IL-17 producing T-cells (Th17/Tc17) play an important role in autoimmune diseases, but their function in cancer is more controversial.

While some studies have shown a pro-cancerous role for IL-17, other studies have shown an anti-tumor function. The induction of polarized T-cell responses can be regulated by dendritic cells (DCs). DCs are key regulators of the immune system with the ability to affect both innate and adaptive immune responses. These properties have led many researchers to study the use of ex vivo manipulated DCs for the treatment of various diseases, such as cancer and autoimmune diseases.

While Th1/Tc1 cells are traditionally used for their potent anti-tumor responses, mounting evidence suggests Th17/Tc17 cells should be utilized by themselves or for the induction of optimal Th1 responses. It is therefore important to understand the factors involved in the induction of both type-1 and type-17 T-cell responses by DCs.

Radiation as Immunomodulator: Implications for Dendritic Cell-Based Immunotherapy

The last decade has witnessed significant progress in the field of cancer immunotherapy. This has, in part, been driven by a growing recognition that elements of the innate immune response can be harnessed to induce robust immunity against tumor-associated targets. Nonetheless, as clinically effective immunotherapy for the majority of cancers remains a distant goal, attention has shifted toward multimodality approaches to cancer therapy, sometimes combining novel immunotherapeutics and conventional therapeutics. The traditional view of radiation therapy as immunosuppressive has been challenged, prompting a re-evaluation of its potential as an adjunct to, or even a component of immunotherapy. Radiation therapy may enhance expression of tumor-associated antigens, induce targeting of tumor stroma, diminish regulatory T-cell activity and activate effectors of innate immunity such as dendritic cells through Toll-like receptor (TLR)-dependent mechanisms. Here, we review recent progress in the field of dendritic cell-based immunotherapy, evidence for radiation-induced anti-tumor immunity and TLR signaling and the results of efforts to rationally integrate radiation into dendritic cell-based immunotherapy strategies.

Affiliation

A  Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania.

Breast Cancer Developments

Over-expression of the HER2/neu receptor occurs in 20 to 30 percent of breast tumors and is linked to poorer prognosis. The HER2/neu expression status determines whether or not patient will receive trastuzumab-based treatment. In clinical practice, over-expression of HER2/neu is routinely identified using Immunohistochemistry (IHC) or Fluorescence in Situ Hybridization (FISH), both of which are invasive approaches requiring tissue samples. Serum assays for the Extra Cellular Domain of HER2/neu receptor (HER2 ECD) have been reported but the use is very limited due to serum interference factors (e.g. human anti-animal immunoglobulin antibodies) that lead to false test results and inconsistency with tissue Her2 status. We have developed an ELISA based approach using an MBB buffer to eliminate false results and to obtain more accurate assessment of HER2 ECD levels. Using this refined assay we retroactively measured HER2/neu levels from breast cancer patients and controls. Abnormal HER2 ECD levels were detected in about 32% of invasive breast cancer patients but not in controls or patients with benign diseases. In addition, we also showed that patients with elevated serum HER2 levels appeared to have worse survival regardless of treatments. In a small group of 12 Ductal Carcinoma in situ (DCIS) patients who received HER2/neu peptide vaccination and surgery, only one patient showed constantly rising HER2 levels after treatment and this patient had recurrence of HER2 positive tumor within 5 years. Our studies indicate that once the serum interference issue is resolved, serum HER2 ECD can have potential clinical utility to supplement the tissue based tests.

Affiliation

Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, U.S.A.