Vaccines

Reengineering dendritic cell-based anti-cancer vaccines

Despite initial enthusiasm, dendritic cell (DC)-based anticancer vaccines have yet to live up to their promise as one of the best hopes for generating effective anti-tumor immunity. One of the principal reasons for the generally disappointing results achieved thus far could be that the full potential of DCs has not been effectively exploited.

Here, we argue that dramatic improvements in vaccine efficacy will probably require a careful re-evaluation of current vaccine design. The formulation of new strategies must take into account the natural history of DCs, particularly their role in helping the immune system deal with infection. Equally critical is the emerging importance of soluble factors, notably interleukin-12, in modulating the quality of immune responses.

Vaccines should also be designed to recruit helper T cells and antibody-producing Bcells rather than simply cytotoxic T lymphocytes. Finally, the judicious selection of tumor, target antigen, and disease stage best suited for treatment should serve as the foundation of trial designs. Our discussion addresses a recent clinical vaccine trial to treat early breast cancer, where many elements of this new strategy were put into practice.

A Novel Dendritic Cell-Based Immunization

The immune system has traditionally been divided into two parts; the innate and the adaptive. The innate immune system’s components include monocytes, macrophages, granulocytes, NK and dendritic cells (DC). The adaptive immune system is composed of antibody-producing B lymphocytes, as well as CD4pos helper T cells and CD8pos cytotoxic T cells. These cells work together to sense, control and eliminate infection. Agents of innate immunity identify microbes through special pattern recognition receptors that sense biochemical structures (usually non-proteins) common to broad classes of potential pathogens

(1). On the other hand, T and B lymphocytes specialize in responding against antigens (usually proteins) specific to the individual species of microbe. DCs have a unique role in that they form a critical bridge between innate and adaptive immunity. Pattern recognition proteins belonging to the Toll-like family of transmembrane receptors (2) induce a maturation and migration program whereby various DC populations, including monocytederived DCs, convey peripherally-acquired proteins to T cells located in the regional draining lymph nodes (3).

The DCs “present” the microbial antigens to T cells in the form of processed peptides complexed with self major histocompatibility proteins (4). This supplies an important signal (signal 1) to T cells that, along with maturation-enhanced co-stimulatory molecule (CD80, CD86) expression (signal 2), can fully activate T cells (5). DCs and some other accessory cells can supply so-called “third signals” (6) that often are expressed in the form of soluble factors, for example, IL-12, IL-23, IL-6 and TGF-beta. Such signals can profoundly influence helper T cell development toward discrete functional phenotypes that include IFN-γ-secreting Th1, IL-17- secreting Th17, as well as anti-inflammatory Treg that produce TGF-beta and IL-10 (7–10).

In many instances, the precise combination of activation signals received by DC dictates whether individual 3rd signal agents will be produced, and hence which Th phenotypes will be selectively induced by the DC (11). Although the immune system evolved primarily to deal with infections, it may be possible to direct it against malignancies. An ideal strategy for inducing anti-tumor immunity must successfully accomplish several goals-some of which are overlapping with traditional antimicrobial vaccines, but others unique to the particular requirements of effective anti-tumor immunity. For example, an effective anti-tumor vaccine must overcome the immune system’s natural tendency to resist the development of strong immunity against self-proteins (i.e. tolerance).

It must also generate immunity of a quality and intensity likely to reduce or eliminate tumor burdens. In the case of therapeutic vaccines, immunity must be effectively induced when disease is already firmly established. Finally, such induced immunity should be durable, so that possible tumor recurrences can be suppressed for long per periods postimmunization.

Development of Vaccines for High-Risk Ductal Carcinoma In situ of the Breast

With the widespread use of screening mammography, ductal carcinoma in situ (DCIS) has become the most frequently diagnosed cancerous lesion identified in the breast. Like invasive breast cancer, DCIS is heterogeneous and represents a relatively wide spectrum of diseases.

Low-grade DCIS either rarely develops into invasive disease or progresses slowly to invasiveness over the course of 8 to 10 years. On the other hand, if untreated, high-grade DCIS lesions that display comedonecrosis will likely develop into invasive breast cancers over a 5- to 7-year period. Following current conventional treatment with surgery with wide margins (lumpectomy; ref. 1), lumpectomy plus radiation therapy (2), or mastectomy, the overall prognosis for these patients is excellent. Nonetheless, many patients (at least 30%) require the more aggressive therapeutic option (mastectomy) either because of extensive disease or for fear of cancer recurrence.

The latter remains a significant risk, particularly in younger patients. Fortunately, the relatively long period of latency between the onset of DCIS and development of invasive breast cancer offers an opportunity for novel neoadjuvant interventions. The potential benefits of such neoadjuvant therapies include (a) reduction of risk for subsequent breast cancer, (b) reduction in the psychological effect of the disease related to fear of recurrence, and (c) reduction in the morbidity resulting from surgery and radiation.

The latter would be achieved through diminution in the extent of disease before the application of standard therapies, limiting the need for radiation and decreasing the need for extensive surgical
resections.

Vaccination Strategies

Vaccination strategies incorporating the immunodominant HLA-A2-restricted HER2/neu-derived peptide 369-377 (HER2369-377) are increasingly utilized in HER2/neu-expressing cancer patients. The failure of postvaccination HER2369-377-specific CD8(+) T cells to recognize HLA-A2(pos)HER2/neu-expressing cells in vitro, however, has been attributed to impaired MHC class I/HLA-A2 presentation observed in HER2/neu-overexpressing tumors. We reconcile this controversy by demonstrating that HER2369-377 is directly recognized by high functional-avidity HER2369-377-specific CD8(+) T cells-either genetically modified to express a novel HER2369-377 TCR or sensitized using HER2369-377-pulsed type 1-polarized dendritic cells (DC1)-on class I-abundant HER2(low), but not class I-deficient HER2(high), cancer cells. Importantly, a critical cooperation between CD4(+) T-helper type-1 (Th1) cytokines IFNγ/TNFα and HER2/neu-targeted antibody trastuzumab is necessary to restore class I expression in HER2(high) cancers, thereby facilitating recognition and lysis of these cells by HER2369-377-specific CD8(+) T cells. Concomitant induction of PD-L1 on HER2/neu-expressing cells by IFNγ/TNF and trastuzumab, however, has minimal impact on DC1-sensitized HER2369-377-CD8(+) T-cell-mediated cytotoxicity. Although activation of EGFR and HER3 signaling significantly abrogates IFNγ/TNFα and trastuzumab-induced class I restoration, EGFR/HER3 receptor blockade rescues class I expression and ensuing HER2369-377-CD8(+) cytotoxicity of HER2/neu-expressing cells. Thus, combinations of CD4(+) Th1 immune interventions and multivalent targeting of HER family members may be required for optimal anti-HER2/neu CD8(+) T-cell-directed immunotherapy.

Affiliation

Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. Rena Rowen Breast Center, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania. brian.czerniecki@uphs.upenn.edu.