Neoadjuvant Therapy

Anti-HER2 CD4(+) T-helper Type 1 Response is a Novel Immune Correlate to Pathologic Response Following Neoadjuvant Therapy in HER2-positive Breast Cancer

A progressive loss of circulating anti-human epidermal growth factor receptor-2/neu (HER2) CD4(+) T-helper type 1 (Th1) immune responses is observed in HER2(pos)-invasive breast cancer (IBC) patients relative to healthy controls. Pathologic complete response (pCR) following neoadjuvant trastuzumab and chemotherapy (T + C) is associated with decreased recurrence and improved prognosis. We examined differences in anti-HER2 Th1 responses between pCR and non-pCR patients to identify modifiable immune correlates to pathologic response following neoadjuvant T + C.


Anti-HER2 Th1 responses in 87 HER2(pos)-IBC patients were examined using peripheral blood mononuclear cells pulsed with 6 HER2-derived class II peptides via IFN-γ ELISPOT. Th1 response metrics were anti-HER2 responsivity, repertoire (number of reactive peptides), and cumulative response across 6 peptides (spot-forming cells [SFC]/10(6) cells). Anti-HER2 Th1 responses of non-pCR patients (n = 4) receiving adjuvant HER2-pulsed type 1-polarized dendritic cell (DC1) vaccination were analyzed pre- and post-immunization.
Depressed anti-HER2 Th1 responses observed in treatment-naïve HER2(pos)-IBC patients (n = 22) did not improve globally in T + C-treated HER2(pos)-IBC patients (n = 65). Compared with adjuvant T + C receipt, neoadjuvant T + C – utilized in 61.5 % – was associated with higher anti-HER2 Th1 repertoire (p = 0.048). While pCR (n = 16) and non-pCR (n = 24) patients did not differ substantially in demographic/clinical characteristics, pCR patients demonstrated dramatically higher anti-HER2 Th1 responsivity (94 % vs. 33 %, p = 0.0002), repertoire (3.3 vs. 0.3 peptides, p < 0.0001), and cumulative response (148.2 vs. 22.4 SFC/10(6), p < 0.0001) versus non-pCR patients. After controlling for potential confounders, anti-HER2 Th1 responsivity remained independently associated with pathologic response (odds ratio 8.82, p = 0.016). This IFN-γ(+) immune disparity was mediated by anti-HER2 CD4(+)T-bet(+)IFN-γ(+) (i.e., Th1) – not CD4(+)GATA-3(+)IFN-γ(+) (i.e., Th2) – phenotypes, and not attributable to non-pCR patients’ immune incompetence, host-level T-cell anergy, or increased immunosuppressive populations. In recruited non-pCR patients, anti-HER2 Th1 repertoire (3.7 vs. 0.5, p = 0.014) and cumulative response (192.3 vs. 33.9 SFC/10(6), p = 0.014) improved significantly following HER2-pulsed DC1 vaccination.


Anti-HER2 CD4(+) Th1 response is a novel immune correlate to pathologic response following neoadjuvant T + C. In non-pCR patients, depressed Th1 responses are not immunologically “fixed” and can be restored with HER2-directed Th1 immune interventions. In such high-risk patients, combining HER2-targeted therapies with strategies to boost anti-HER2 Th1 immunity may improve outcomes and mitigate recurrence.

Affiliation

Department of Surgery, University of Pennsylvania Perelman School of Medicine, Rena Rowen Breast Center, 3400 Civic Center Drive, Philadelphia, PA, 19104, USA.